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Abstract

We describe a stochastic small-world network model of transmission of the SARS virus. Unlike the standard Susceptible-Infected-Removed
models of disease transmission, our model exhibits both geographically localised outbreaks and “super-spreaders”. Moreover, the combination
of localised and long range links allows for more accurate modelling of partial isolation and various public health policies. From this model, we
derive an expression for the probability of a widespread outbreak and a condition to ensure that the epidemic is controlled. Moreover, multiple
simulations are used to make predictions of the likelihood of various eventual scenarios for fixed initial conditions. The main conclusions of this
study are: (i) “super-spreaders” may occur even if the infectiousness of all infected individuals is constant; (ii) consistent with previous reports,
extended exposure time beyond 3–5 days (i.e. significant nosocomial transmission) was the key factor in the severity of the SARS outbreak in
Hong Kong; and, (iii) the spread of SARS can be effectively controlled by either limiting long range links (imposing a partial quarantine) or
enforcing rapid hospitalisation and isolation of symptomatic individuals.
c© 2006 Elsevier B.V. All rights reserved.
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1. SARS

The SARS virus first appeared during October 2002 in the
Guangdong province of southern China. It then passed over
the border to Hong Kong and from there spread to Europe,
Africa, Asia, Australia and the Americas [1]. The outbreak in
2003 infected 8422, killing 916 [2]. In this paper we focus on
modelling the transmission of SARS within Hong Kong. Beside
mainland China, Hong Kong suffered the greatest casualties [2].
In addition, the epidemiological data currently available for
Hong Kong is far superior to that of the Chinese mainland.1

Two characteristic features were observed during the SARS
outbreak in Hong Kong in 2003 (see Fig. 1) [3,4]: so-called
super-spread events (SSE), in which a single individual initiates
∗ Corresponding author. Tel.: +852 2766 4744; fax: +852 2362 8439.
E-mail address: ensmall@polyu.edu.hk (M. Small).

1 During the epidemic, mainland authorities classified information on SARS
infections as a state secret. Moreover, bureaucracy caused much of the available
information to be concealed. Despite this, subsequent official investigation
indicates that the infection rate for the Chinese mainland was significantly over-
reported. The reliability of data from China is therefore uncertain.
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a large number of cases; and persistent transmission within the
community. Two widely cited SSEs were observed early in
the epidemic and have been the subject of much attention: at
the Amoy Gardens housing estate and at the Prince of Wales
hospital. Epidemiological studies [5,1] have found that in Hong
Kong:

• the fatality rate was approximately 17% (compared to 11%
globally);

• the mean incubation period was 6.4 days (range 2–10
days) [6];

• the duration between onset of symptoms and hospitalisation
was 3–5 days; and,

• the mean number of individuals infected by each case during
the initial phase of the epidemic (excluding SSEs) was
2.7 [4].

Standard deterministic SIR (susceptible-infected-removed)
models of the spread of infectious diseases [7] make
several important assumptions. An alternative approach [8],
particularly popular for the study of sexually transmitted
diseases [9–11], is to build an explicit network and model
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Fig. 1. Daily SARS infection data for Hong Kong. The top panel is the daily
infection rate reported in the Hong Kong media during the outbreak. The lower
plot is the (revised) estimated daily number of infections determined after more
detailed investigation by the Hong Kong Department of Health. At the end of
the epidemic, 105 days after the first recorded case, a total of 1755 confirmed
infections had been identified in Hong Kong. Both data sets are freely available.

disease transmission along the links. Under certain network
structures, it is then possible to obtain a closed form study of
the underlying transmission pattern [10,12]. In particular, [12]
studied the transmission of an epidemic among a population
whose individuals are connected both locally and globally.
From this, they were able to obtain an approximately Poisson
distribution for the contact distribution.

In [13], Hufnagel and co-workers also studied the local
and non-local transmission of epidemics. The main features
modelled by [13] are local SIR infection (with the usual
stochastic differential equations) and long distance complex
network links to model global aviation routes. They show that
transmission dynamics with similar geographical dispersion to
the 2003 SARS outbreak can develop in the model. In contrast
to [13], we focus on abstract network models within a particular
community. A similar global model of SARS transmission
could be achieved by introducing an aviation network model
on top of the models presented in this paper.

Recently, both small-world (SW) and scale-free (SF)
networks have been observed in many areas of natural and
physical science, including social relationships [14,15]. The
important feature of both SW and SF networks is that they
are highly connected: the average path length between random
individuals is relatively short. Moreover, for SF networks,
the node degree distribution follows a scale-free distribution.
Hence, in many areas of natural and physical science, this
new model structure has unveiled a rich range of behaviours
In this paper, we apply these methods to the modelling o
the spread of SARS in Hong Kong; transmission is only
allowed to occur along a limited number of direct links
between individuals. By doing this, we will avoid making one
of the assumptions underlying standard Susceptible-Infected
Removed (SIR) models: a homogeneous fully connected
population. The SIR model assumes that all individuals are
susceptible to the disease and all suffer an equal, small, positive
probability of contracting the virus. This homogeneous mode
leads to a continuous and smooth inter-day distribution o
infections. Irregularities in this are usually attributed to random
variation and non-stationarity in the model parameters.

In proposing an alternative to the standard SIR model, we
do not claim that the SIR model has failed. Certainly, the powe
of any model lies in its simplicity, and its ability to capture the
important features of a system. Hence, like the SIR model, the
complex network model that we describe here is very simple
and is described by a very small number of parameters.

Analysis of the spread of SARS with SIR models shows
good correlation between decreasing infection rate r and
the introduction of various governmental control measures
quarantine and public awareness campaigns [16]. However
these results are based on a very simplistic model, and
localised outbreaks (such as the incident at Amoy Gardens
are not modelled very well. While it is impossible to predic
the occurrence of such outbreaks, SW–SF models provide a
more realistic physical model of the relationships between
individuals in a community and will therefore provide a bette
picture of the true disease dynamics. Note that, since one canno
actually predict when a particular SSE will occur, one canno
accurately model the timing of the peak in the time series o
Fig. 1. Moreover, it is not possible to accurately model the
initial SSE at the Prince of Wales hospital, which “kick started”
the SARS outbreak in Hong Kong. To include the same initia
spread of SARS in Hong Kong, via a rather singular SSE, tha
SSE must be included explicitly in the model.

In other areas where SW–SF models have been applied
a rich range of behaviours has been observed. Unlike
standard differential equation based models, SW and/or SF
structures model the underlying network of connections
between individuals directly. Our model is designed to capture
explicitly the small-world features of social interaction. Ou
model is not scale-free. To generate a scale-free model fo
disease epidemics, one needs a power-law distribution o
infection links; we consider the theoretical implementation o
such a model in a separate paper [16].

Finally, we will also provide one possible answer to the
question posed by Galvani and May [17]: “Were SARS super
spreaders anomalies, or are super-spreaders characteristic o
most infectious diseases?” [17]. We show that, even with
uniform rates of infection, super-spreaders will occur, to
varying degrees, in a small-world or scale-free [16] network
The implication is that super-spreaders are not (necessarily) a
result of variable rate of infection. Nonetheless, we argue tha
the SARS outbreak in Hong Kong was initiated by a single
rather unfortunate, super-spreader event.
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In the next section, we describe our model and study
its behaviour analytically. Subsequent sections present some
numerical simulations and a summary of our results.

2. The model

In the following subsections, we define our model structure
(Section 2.1) and derive some analytical results concerning the
likelihood of a widespread outbreak (Section 2.2).

2.1. Model topology

Our aim is to capture accurately the qualitative features
of the SARS epidemic with the simplest model (the fewest
parameters). We propose four distinct states. Individuals can
be susceptible (S), prone (P), infected (I), or removed (R). The
transmission path is depicted in Fig. 2. Infected individuals
can cause susceptible individuals, to whom they are linked, to
become prone with some probability (p1 or p2). By infection
we mean the transition from the susceptible state to the
prone state. Infected individuals can cause their immediate
neighbours to become infected with probability p1; long range
links cause infection with probability p2. Prone individuals
become infected with probability r0 and, finally, infected
individuals become removed with probability r1. Just as in the
SIR model, we do not distinguish fatalities from recoveries:
in either case, the individuals are assumed to have acquired
immunity. The model states that we describe here bear a close
correspondence to the four states of the SEIR model. The prone
state is analogous to the exposed (E) state in the SEIR model.
We choose to use the new term P because the epidemiological
state is slightly different. By prone we mean both the infected
but not infectious (incubation) period and the pre-symptomatic
period. For SARS, all infections in Hong Kong could be traced
to contact with a symptomatic individual.2 Hence, for the
purposes of modelling transmission, we assume that, during
the pre-symptomatic period, there is no chance of transmission.
Moreover, to calibrate our model with the observed data (which,
by definition, are hospital admissions), we further prescribe that
the time between the onset of symptoms and hospitalisation
is constant (or, equivalently, follows a stationary unimodal
distribution).

In our model we explicitly model the geographical structure
of the population. We include both “local” and “non-local”
links. Because of common transmission of SARS within
specific housing estates and districts in Hong Kong, and the
(both real and perceived) risk of transmission in workplaces
(primarily hospitals and schools) or other public areas,
we model these two types of transmission separately. The
geographical arrangement of nodes represents the residence of
each individual. So, by “local” transmission, we mean only
transmission within a family unit (i.e. residents of a single flat),
or between adjacent flats.3 Hence, “non-local” transmission
2 This may be due to the physical mechanism of transmission (via contact
or “droplets”) or due to the fact that so many transmissions occurred within
hospitals. In either case, the implication for our model is the same.

3 As the vast majority of residents in Hong Kong live in high-density, high-
rise buildings, a three-dimensional grid may be more appropriate. However, for
the present time, we restrict our interest to the two-dimensional case.
(a) State transition flow graph.

(b) Small-world network structure.

Fig. 2. The top panel depicts the transmission state diagram: S to P based on
the SW structure and the infection probabilities p1,2; P to I with probability r0;
and I to R with probability r1. The lower panel depicts the distinction between
“local” (i.e. short range) and “non-local” (long range) network links. The lower
panel shows the arrangement of nodes in a small-world network. The black
(infected) node may infect its four immediate neighbours with probability p1
and three other nodes (hashed) with probability p2.

refers to transmission between non-family members due to the
mixing of individuals in public spaces. In the context of the
SARS outbreak in Hong Kong, this would include transmission
within hospitals, schools and public spaces. In our model, we
expect SSE to be represented through a single node with a large
number of non-local connections.4

We fix the population N and assume that there are no
other additions to, or deletions from, the population from any
other cause for the duration of each simulation. The population
of N nodes is arranged in a regular grid, of side length L
(L2

= N ), and each node is connected directly to n1 immediate
neighbours.5 An infected individual will infect each of its
n1 neighbours (provided that they are still susceptible) with
probability p1. Furthermore, each node has n2 non-local (i.e.
long distance) links (see Fig. 2). These are links to nodes that
are geographically remote from one another; infection occurs
along these pathways with probability p2. For each node i ,
the number n(i)

2 is fixed, and so are the links to its n(i)
2 remote

neighbours once they are established. The number n(i)
2 is chosen

to be proportional to a decaying exponential fX (x) ∝ e−
x
µ with

parameter µ proportional to the expected (average) number of

4 As we will see in what follows, the number of local connections is constant
for all nodes.

5 The grid is assumed to be topologically equivalent to the surface of an
annulus in three dimensions, that is, nodes (1, 1) and (L , L) are neighbours.
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links to remote nodes, where n(i)
2 = bxc. Hence we have

P(n(i)
2 = m) =

1
C

e−
m
µ (1)

where

C =

∞∑
m=0

e−
m
µ

=
1

1 − e−
1
µ

.

It is the inclusion of non-local links with a random number of
links that can give rise to the network’s SW (and, in other cases
not considered here, SF) structure. In this paper, we assign an
exponentially decaying probability distribution to any number
of links, and (for uni-directional links) this is sufficient to
generate the necessary SW properties. An SF network requires
a power-law distribution of the number of links (which can
consequently lead to more nodes with many more links) and
we do not examine that case here. The SF distribution of
the induced network of actual infections has been considered
elsewhere [16].

It is worth considering that, for the model that we present
here, the links between nodes are uni-directional. That is,
infection only spreads in one direction. Clearly, the true
network of social interaction consists of bi-directional links.
But, for the purposes of simulating disease transmission,
unidirectional links appear to be a sufficient approximation. The
consequence of this is that it becomes easier to generate the
small-world (and elsewhere the scale-free) network.

Finally, for each simulation we seed the model with
one randomly chosen initial infection. We expect that
computational simulations of this network will show that
infection spreads locally, just as SARS spread within particular
geographical regions of Hong Kong. Moreover, the system
can also exhibit non-local infection, as a single individual
may infect individuals in distant communities. Occasionally,
individuals will infect a large number of others, exactly as was
observed at the start of the SARS epidemic in Hong Kong (an
SSE). However, unlike the start of the SARS epidemic in Hong
Kong, because we seed our population with a single infectious
individual, we do not expect to see the initial SSE triggered
by that individual (except by chance). Therefore, the initial
growth of transmission in our model is exponential rather than
an SSE. The only way to overcome this is to include explicitly
the “seed” SSE in the model, regardless of network topology.

2.2. Behaviour

The epidemic will eventually be contained if the rate of
infection is lower than the rate of removal. Intuitively, provided
that (n1 p1 + µp2) � r1, one would expect the disease to
become endemic; conversely, if (n1 p1 +µp2) � r1, the disease
will be contained. In what follows, we study this condition more
precisely.

Moreover, with this model we can analytically compute the
probability of an outbreak being self-terminating. For a single
infectious node, the probability of no further infections on a
given day is given by

Pno1 =

∞∑
m=0

[
(1 − p1)

n1(1 − p2)
m P(n(i)

2 = m)
]

= (1 − p1)
n1(1 − e−

1
µ )

∞∑
m=0

[
e−

1
µ (1 − p2)

]m

=
(1 − p1)

n1(e
1
µ − 1)

e
1
µ − 1 + p2

. (2)

Hence the probability of no further infections from this node
can be closely approximated by the infinite geometric series
using the average Pno1 computed in Eq. (2):

Pnone ≈ Pno1r1 + P2
no1(1 − r1)r1 + P3

no1(1 − r1)
2r1 + · · ·

=
Pno1r1

1 − Pno1(1 − r1)
(3)

provided that |Pno1(1 − r1)| < 1. Upon substitution of Eq. (2)
into (3), we find that

Pnone =
r1(1 − p1)

n1

1 − (1 − r1)(1 − p1)
n1 + p2

/[
e

1
µ − 1

] . (4)

Eq. (4) is the probability of no infections from a given
individual, and is therefore a weak lower bound on the
probability of no general outbreak.

Now, let us denote the probability of no further infections
occurring, given that there are k infectious nodes by

P(k)
= P(k)

none = Prob(no further infection | k infectious nodes)

where, for notational convenience, we will drop the subscript
on Pnone. Treating infections as discrete events (i.e. they occur
one at a time), we have that (1− Pk) is the probability of at least
one further infection from k infectious nodes. The probability
that the epidemic will terminate is given by

Psafe = P + (1 − P)
[

P2
+ (1 − P2)

×

[
P3

+ (1 − P3)
[

P4
+ (1 − P4) [. . .]

]]]
=

∞∑
m=0

Pm+1
m∏

n=1

(1 − Pn) (5)

where P = Pnone is given by Eq. (4). By expanding Eq. (5) and
comparing to the Pentagonal Number Theorem,6 we find that
Eq. (5) can be rewritten as an infinite sum

∞∑
m=0

Pm+1
m∏

n=1

(1 − Pn) = P + P2
− P5

− P7

+ P12
+ P15

− P22
+ · · ·

=

∞∑
m=1

(−1)m+1
[

P
1
2 m(3m−1)

+ P
1
2 m(3m+1)

]
(6)

6 This result was originally proved by Euler in 1775.
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where the sequence of indices 0, 1, 2, 5, 7, 12, 15, 22, 26, 35 . . .

is the generalised pentagonal numbers (described as sequence
A001318 in [18]). Eq. (6) may also be re-written in terms of the
Dedekind eta function, but for the purposes of this discussion
it is unnecessary to do so. Nonetheless, for 0 ≤ P < 1 this
sequence converges fairly rapidly as the order of the exponent
increases.

The exact7 probability of a general outbreak can alterna-
tively be obtained by using a branching process method. Fol-
lowing [19], we define

g1(x) = (1 − p1 + p1x)n1

∞∑
m=0

1
C

e−
m
µ (1 − p2 + p2x)m

=
(1 − p1 + p1x)n1(1 − e−

1
µ )µ

1 − e−
1
µ (1 − p2 + p2x)

, (7)

the probability generating function for the number of secondary
cases produced by a single infectious case in a day. Then
the probability generating function for the overall number of
secondary infections from a single primary case is

g(x) =

∞∑
j=1

g1(x) jr1(1 − r1)
j−1

=
r1g1(x)

1 − (1 − r1)g1(x)
. (8)

One can then obtain the probability of no general outbreak (i.e.
the probability of the disease not becoming endemic) as the
smallest solution x ∈ [0, 1] of g(x) = x .

Unfortunately, Eq. (8) cannot be readily used for further
analysis. Similarly, although Eq. (5) can be computed easily,
it is not in a form that is immediately amenable for further
analysis. However, since Psafe ≥ Pnone, it is clear that

µ
[
1 − (1 − p2)e

−
1
µ

]
� 1 will make Psafe ≈ 0. Hence, either

µ � 1 or p2 ≈ 1 will lead to widespread infection (as
expected). Differentiating (5) with respect to (1 − p1)

n1 , we
can easily verify that Psafe is a monotonic function of both p1
and n1. One can therefore observe that Psafe ≈ 0 if p1 ≈ 1 or
n1 � 1.

The most severe limitation on Eq. (5), and also Eqs. (7) and
(8), is that we assume that no infected nodes have common
neighbours, and that all of the neighbours are susceptible. In
reality, the number of potential infections is limited by the fact
that some of the potential neighbours are already infected. It is
therefore important to estimate the number of neighbours of an
infected node that have not been infected. This is equivalent
to estimating the ratio of local and non-local infections in
an epidemic.8 One can consider the network of infected
individuals as consisting of a number of “clumps”: one clump
7 Because of the assumption that infections occur individually and
sequentially, the branching process in Eq. (5) is only an approximation to the
solution of Eq. (8).

8 We can achieve this as follows. Suppose that there are no non-local
infections (i.e. p2 = 0) and that infections grow in a single (roughly spherical)
“clump”. Then, if the clump consists of I (t) individuals, then the radius of this
for each non-local infection (i.e. each clump is seeded by a non-
local transmission; all other transmissions within that clump are
local). Provided p2 > 0, this implies that, as the clump gets
bigger, the probability of any given infection being a long range
infection will increase. Conversely, as the number of clumps
increases, the probability of local infection (relative to non-
local infection) will increase.9

Let us now estimate the expected number of connections
from an infected node. Let NS denote the expected number
of susceptible nodes linked to a random node. If this node
is the result of a non-local infection, then we suppose that
NS = n1 + µ; however, if this is the result of a short range
infection, then this number should be lower (certainly no more
than µ + n1 − 1). Now,

Prob(long range infection | infection) =
µp2

n1kp1 + µp2

Prob(short range infection | infection) =
n1kp1

n1kp1 + µp2

where k is the proportion of local links that support possible
infection and 0 < k ≤

n1−1
n1

. Hence,

NS = (n1 + µ)
µp2

n1kp1 + µp2
+ (n1k + µ)

n1kp1

n1kp1 + µp2

= n1
n1k2 p1 + µp2

n1kp1 + µp2
+ µ. (10)

From the preceding geometric argument, if infection grows
in a single clump, then k ≈

1
2 . Moreover, k < 1

2 only if
nodes remain infected when they are on the interior of such
“clump” (i.e. when r1 is very low). We would therefore expect
that 1

2 ≤ k ≤
n1−1

n1
. Note that k is not a model parameter, but

rather it is a term in the model that will both depend on the
various model parameters and vary with time.

Finally, we now consider the rate of transmission. Let
P(t), I (t) and R(t) be the number of prone, infected and
removed individuals at time t (in days). The probabilities r0
and r1 can therefore be considered as the rates at which prone
nodes become infectious and infectious nodes become removed
(respectively). Similarly, (n1 p1k+µp2)S(t)I (t) is the expected
number of new infections. Suppose that S(t) � R(t) + I (t) +

clump will be
√

I (t)
π and the number of susceptible individuals is 2

√
I (t)π .

Now, further suppose that all nodes in the clump are infectious (i.e. r1 = 0),

then the mean number of links per infected individual is 2
√

π
I (t) . Even with

r1 > 0, as the clump grows, there are, on average, fewer potential infection
paths.

9 Moreover, one can estimate the number of clumps K . Observe that K ≈
µp2

n1 p1+µp2
× (number of infections). More precisely,

K =
µp2

(Ns − µ)p1 + µp2
× I

=
µp2(n1kp1 + µp2)

n1 p2(n1k2 p1 + µp2) + µp2(n1kp1 + µp2)
× I (9)

where I is the total number of infections.



M. Small et al. / Physica D 215 (2006) 146–158 151
P(t) ∀t . Then

R(t + 1) = R(t) + r1 I (t)

I (t + 1) = I (t) − r1 I (t) + r0 P(t)

P(t + 1) = P(t) − r0 P(t) + nk I (t)

(11)

where nk = (n1 p1k + µp2) is the expected number of links
for each infectious node. We are now modelling the inter-day
process assuming discrete day-to-day dynamics. The reason for
this approximation is that the available time series data (which
will be the basis of our comparison) is similarly course-grained.
Assuming that the population is seeded with a single infectious
individual, the solution of Eq. (11) is given byR(t)

I (t)
P(t)

 =

1 r1 0
0 (1 − r1) r0
0 nk (1 − r0)

t 0
1
0


= P Dt P−1

[0 1 0]
T (12)

where P = [v1 v2 v3] is the matrix of eigenvectors and

Dt
=

λt
1 0 0

0 λt
2 0

0 0 λt
3


is formed from the corresponding eigenvalues, given by

λ1 = 1

λ2,3 = 1 −
r0 + r1

2
±

√
1
4
(r0 − r1)

2
+ nkr0.

It then follows that the system has a marginally stable focus (i.e.
the epidemic will terminate) if |λ2,3| < 1, i.e.

nk < r1 (13)

nkr0 < (2 − r0)(2 − r1). (14)

The second condition (14) is only violated if nk > 1, which
would also violate condition (13). Therefore, the epidemic is
controllable provided that nk = n1 p1k + µp2 < r1. The right
hand side of this inequality is the rate of infection and the left
hand side is the rate of removal, as expected. In fact, this result
is exactly analogous to the equivalent result for the continuous
SIR model [7]. Moreover,

max
i=1,2,3

|λi | = 1 −
r0 + r1

2
−

√
1
4
(r0 − r1)

2
+ nkr0. (15)

Computationally, we can see that, as r0 or nk increases, then
the rate of growth of the epidemic also increases. Conversely,
as r1 increases, the rate of growth decreases. This is as one
would expect, as increasing r1 will decrease the number of
infectious individuals while increasing either r0 or nk increases
this quantity.

3. Computation

In the following subsections, we confirm the preceding
relationships and numerically explore the behaviour of our
models under a variety of conditions.
3.1. Model parameters

As stated, our model has seven explicit parameters: L , n1,
µ, p1, p2, r1, and r2. For the population of Hong Kong, we
set L = 2700 (N = L2

= 7,290,000). We arbitrarily choose
n1 = 4 and set E(n2) = µ = 7 [16]. One further parameter is
the time interval between successive steps in the discrete time
simulations from our model. We choose the natural scale of one
day. However, it is not obvious that this is the best choice. Given
that the data is discretised to this interval, it is perhaps the best
choice in this situation. Nonetheless, to confirm that this choice
is appropriate, we have repeated our analysis with both longer
and shorter time steps. The results are equivalent.

The average incubation period between infection and an
individual becoming symptomatic is 6.4 days [6]. The number
of days in the prone state can therefore be modelled as the result
of a series of independent Bernoulli trials with a mean 1

r0
and so

it follows a geometric distribution fX (x) = (1 − p)x−1 p.10 For
a general disease model, it would possibly be more appropriate
to have a separate state for the pre-symptomatic but infectious
period. Although contact tracing of all SARS patients in Hong
Kong has demonstrated that this is not a significant period for
SARS, we have repeated the simulations with this state. If the
hiatus in this state is relatively short, the results are not altered
significantly.

In a similar spirit, the time before hospitalisation is 3–5
days, and we model this as a series of independent Bernoulli
trials. In an effort to establish the degree to which hospital
transmission in our model matches what was observed, we
first assume that hospitalisation is equivalent to isolation of
infectious individuals. That is, we suppose that infectious
individuals are only infectious for 3–5 days. The current weight
of evidence suggests that hospital transmission was a crucial
factor for the SARS outbreak in Hong Kong during 2003. We
will show that this is also the case for our model.

Hence, we suppose for now that the average amount of time
prior to isolation is 4 days (we will consider larger values later).
In our model, the number of days prior to hospitalisation is also
made to follow a geometric distribution with mean 1

r1
.

Hence, the only free parameters are µ, p1 and p2. Without
active control, we also know that the average number of new
infections per case (excluding SSEs) is 2.7 [4]. In this state,
each infectious individual will infect, on average, n1 p1 +

E(n(i)
2 )p2 new individuals every day. Since E(n(i)

2 ) = µ and
we suppose that the time before hospitalisation is d days, we
have

n1 p1 + µp2 ≈
2.7
d

. (16)

We set d = 4 and therefore p1 ≈
1

n1
(0.675 − µp2) = 0.135 −

µ
n1

p2. In subsequent simulations, we also consider d =

3, 4, 6 and also a larger number of new infections than 2.7.

10 We do it this way simply because it is convenient to do so. For simulation
purposes, this sequence of Bernoulli trials is both easy to implement and (more
importantly) requires very modest computational storage resources.
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In each case, the results are equivalent to those presented
here. However, we maintain the values described above in the
following discussion. Any deviation of results between these
and other values will be highlighted in the text.

Our initial model parameters are therefore [16]:

L = 2700,

r0 =
1

7.4
≈ 0.14,

r1 =
1
4

= 0.25,

n1 = 4,

µ = 7, and

p1 = 0.135 −
7
4

p2.

Note that, because we have the possibility of P to I transition
after zero days, r0 =

1
7.4 rather than 1

6.4 . This does not have
a significant effect on our results; it is merely a computational
convenience. Now, from Eq. (15) we can deduce that the rate of
growth of infection is approximately

1 − 0.5 ×

(
(0.135 + r1) −

√
(0.135 − r1)

2
+ 0.675 × (3p1 + 7p2)

)
which, for r1 = 0.25, yields either a growth rate significantly
less than exhibited in the data or rates of infection significantly
greater. Even for reasonable variation of d and the average
number of secondary infections, we obtain similar results.
Hence, we conclude that the assumption of no nosocomial
transmission is inconsistent with the observed data. Increasing
the average infectious time to 6 days gives a substantially higher
rate of infection: consistent with the observed data.

3.2. Feasible region

Subject to Eq. (5), we explore which parameter values give
a significant probability of the epidemic becoming endemic.
From Eq. (13), we have that Psafe = 1 if nk < r1. Consistent
with the discussion of the preceding section, we start with the
assumption that k =

n1−1
n1

and set n1 = 4 and µ = 7.
Fig. 3 is a plot of the probability of complete infection for
various parameter values estimated from the data and Eq. (5).
We see that there is close agreement between the theoretical
and experimental results. Moreover, we note that a smaller
value of k is appropriate for scenarios with a relatively high
proportion of local spreading (i.e. p1 larger and p2 ≈ 0). This
is consistent with the case of spreading within a single clump,
and we approach the situation of k =

1
2 . However, in these

simulations the best choice is k > 1
2 in all cases. Only for

extremely small values of r1 and p2 would we expect smaller
values of k. Typically, k =

n1−1
n1

=
3
4 seems to be a good choice.

Furthermore, in Fig. 3 it is evident that the greatest proba-
bility of an epidemic becoming endemic is when there is both
local and non-local infection. In the model that we have con-
structed here, local infection spreads approximately geometri-
cally,11 while non-local infection spreads exponentially. Yet, it

11 Proportional to the size of the clump, to be precise.
is some combination of both that provided the greatest possibil-
ity of an outbreak spreading without control. Clearly, exponen-
tial growth will lead (all else being equal) to more rapid growth
of an epidemic than geometric growth. But, by combining some
geometric growth, the epidemic becomes even more dangerous.
It seems that the additional local transmissions allow each non-
local transmission the possibility of seeding a new infection
cluster (rather than just a single point), and each new cluster
is more difficult to eradicate than a single point infection.

Fig. 4 depicts level curves for the probability of fixed levels
of infection. That is, we compute the parameter values p1,2 ∈

[0, 1] and r1 ∈ [0.1, 0.5] required to achieve specific values of
Psafe. We see that only for p1,2 � 0.2 is the outbreak likely to
be controlled. Moreover, the variation with r1 is not critical i.e.
the range of behaviour for specific p1,2 is not great.

Finally, in Fig. 5 we plot the probability of the epidemic
being controlled for various values of µ with p1,2 ∈ [0, 1],
r0 = 0.1 and r1 = 0.25. Consistent with Fig. 4, results for
different values of r0,1 did not change significantly. Moreover,
from Fig. 5 we see that only for µ > 2 does the infection
probability p2 have a significant effect. That is, to limit long
range infection, one should aim to reduce the average number
of long range links below 2. We find that, for all values of p1,2
and µ > 2, there was remarkably little variation in the value
of Psafe. However, the rate of infection (Eq. (15)) did change
significantly.

3.3. Unconstrained growth

Subject to the choice of parameters in the previous sections,
we now simulate the expected dynamics and compare this to
the theoretical bounds of Section 2.2.

According to theory, restricting the infectious period to five
or fewer days does not yield a growth rate large enough to
be consistent with the observed data. We test that assertion
numerically and find that the observed data (over 1000
individuals infected after 50 days) is inconsistent with the
simulation for r1 = 0.25. However, by lowering r1 to 0.165
(and therefore increasing the mean infectious period to six days,
we achieve results more consistent with the observed data. We
see that only with r1 ≥ 0.165 do we obtain results for which
the true data is not statistically atypical. Moreover, this result is
robust to moderate changes of the other relevant parameters, as
illustrated in Fig. 6. We conclude that the obtained results for
which the true data is not atypical; we require r1 ≥ 0.165 (i.e.
a mean exposure time of six or more days). Moreover, we see
from Fig. 6 that widespread infection is associated with a large
number of clusters. The results of the next section corroborate
this.

3.4. Clustering

To examine the role of clustering more closely, Fig. 7 is a
snapshot of a single simulation for parameter values r1 = 0.25
and p2 = 0.006. This simulation shows SSE resulting from
clustering and highly connected nodes. Moreover, the gradual
spread of the disease within a single cluster is evident; one can
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Fig. 3. Probability of complete infection. The probability of an endemic epidemic for various values of p1,2 and r1 with r0 = 0.1, n1 = 4 and µ = 7. The

probability is estimated from 1000 simulations of the model and according to Eq. (5) with k = 1 (upper dashed line), k =
3
4 (middle dashed) and k =

1
2 . The

convex shape of each of these plots is extremely interesting. This indicates that neither purely local nor purely non-local infection results in the greatest probability
of overall infection, rather an endemic outbreak is most likely when both local and non-local infection is possible.
see that the number of clusters is far less than the number of
infections. Time series of the infection total appear qualitatively
similar to the Hong Kong SARS data. Specifically, burstiness
typical of SSEs is evident. However, the quantitative behaviour
of this model is remarkably different to the dynamics observed
in the SARS outbreak. The daily number of reported infections
in Fig. 1 far exceeds the total number of active infected and
prone individuals in Fig. 7.

3.5. Simulations

Finally, we provide simulations of the Hong Kong epidemic
and from multiple simulations estimate the likelihood of
various outcomes based on the model. We initiate the model
with a single infected individual and a relatively low removal
rate r1. Fig. 8 depicts our results.
We can see from Fig. 8 that many of the features of the
true data are reproduced well in the simulations. However,
two important aspects of the simulations are not sufficiently
similar to the data. Firstly, the initial spreading of the disease
is exponential, rather than the single SSE observed in the real
data. Secondly, the magnitude of the SSEs in the simulations is
somewhat smaller than the largest SSEs in the data.

This second aspect can be overcome by simply altering
the distribution of non-local links. In [16] we describe how
a power-law distribution of links can lead to many more
extreme events. Conversely, the initial SSE in the data cannot be
modelled well by our simulations, except by chance. Therefore,
to achieve similar initial events, we would expect that we would
have to execute many simulations (and choose only those that
suit our purpose), or simply build the SSE into the model.
Neither of these approaches are desirable. We prefer to focus on
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Fig. 4. Level curves for probability of complete infection. The probability of
an endemic epidemic for various values of p1,2 and r1 with r0 = 0.1, n1 = 4

and µ = 7. The probability is estimated according to Eq. (5) with k =
3
4 .

The four panels correspond to level curves for the probability of the disease
being self-contained of 0.01, 0.1, 0.5 and 0.9, respectively. The curves and the
contours for r = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. The smooth
dependence of Psafe on each of the parameters is evident.

the possibility of SSEs occurring randomly, without explicitly
adding them in the model. Hence, we do see SSEs, but not
necessarily immediately after the start of the simulation (as we
suppose occurred in the true data).

We now wish to demonstrated how the SW model described
here improves on stochastic SIR-type models [7]. One very
simple way to achieve this is to compare the distribution of
statistic values measured from simulations of either type of
model to the true data. In Fig. 9 we do this, and we find that the
Fig. 6. Unconstrained growth of the infectious population. The upper panels show the number of individuals infected after 50 days; the lower plots show the number
of distinct clusters detected after the same time. The parameter p1 = 0.135 −

7
4 p2, r0 = 0.1, n1 = 4 and µ = 7. The left hand plots are for r1 = 0.25 (i.e. no

nosocomial transmission) and the right panels are for r1 = 0.165 (a mean infection period of 6 days). The results are median, 70% and 90% confidence intervals
from 1000 simulations.
Fig. 5. Probability of control of infection. The probability of the epidemic
terminating without intervention for various values of p1,2 and µ with r0 = 0.1,
r1 = 0.25 and n1 = 4. The probability is estimated according to Eq. (5) with
k =

3
4 . The four panels correspond to µ = 1, 2, 4 and 7, respectively. Reducing

µ greatly increases the probability of being able to control the epidemic,
but increasing µ beyond moderate values (i.e. µ ≥ 4) does not change the
behaviour substantially.

small-world model exhibits statistical properties much closer to
the observed data. In Fig. 9 we compare the results for the SIR-
type model (with stochastic inputs) to the SW model described
in this paper. By generating multiple simulations of both models
and estimating simple statistical measures from both sets of
simulations, we see that the model dynamics of the SW model
are much closer to the true data.

Assuming that this model and parameters are accurate,
or at least appropriate, we compute the likely behaviour for
various epidemics. We generated 1000 realisations of the model
depicted in Fig. 8 and computed the total number of casualties.
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Fig. 7. Outbreak of clusters in a single simulation. The top four panels show the location of infected individuals after 50, 100, 150 and 250 days. Removed, infected
and prone individuals are illustrated as solid dots (R are black, I are red, and P are blue). Parameter values used are r1 = 0.25, p1 = 0.093 and p2 = 0.06, and the
results for these parameter values are typical. The bottom two panels show the number of prone and infected individuals over the same period as time series. One
can clearly see the irregular bursts of activities in the time series corresponding to the explosion in clusters. The total number of infections (R+ I+P) is 22, 40, 117,
and 309 after 50, 100, 150, and 200 days, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Fig. 10 is a plot of the probability distribution of the number of
fatalities for these simulations, and Fig. 11 is the probability
distribution for the daily number of infections. We found
that the probability of infecting fewer than 20 people was
approximately 0.18, while the probability of infecting more
than 1000 was 0.27. One can see that, with respect to these gross
statistics, the true situation for Hong Kong (1755 casualties) is
quite typical.12 It is interesting to note, however, that there is
a large variation in the number of casualties. In all cases, the
parameter values of Fig. 8 provided effective control of SARS
transmission after approximately 150 days.

From these simulations, we therefore conclude that, with
effective control measures in place, the likelihood of a
significant outbreak is low.
12 From 1000 simulations, 106 exhibited a larger number of casualties.
4. Conclusion

We summarise the main results of the preceding sections as
follows.

• The probability of the disease spread being controlled, Psafe,
is approximately
∞∑

m=0

Pm+1
m∏

n=1

(1 − Pm)

where

P =
r1(1 − p1)

n1

1 − (1 − r1)(1 − p1)
n1 + p2

/[
e

1
µ − 1

]
(Section 2.2). An equivalent value can also be obtained from
the smallest zero of Eq. (8), subject to (7), in [0, 1].

• The epidemic is under control if nk = n1kp1 + µp2 < r1
(Section 2.2).



156 M. Small et al. / Physica D 215 (2006) 146–158
Fig. 8. Model simulations. The top panel shows the change in parameters r1 and p2 with time (all other parameters are constant: p1 = 0.08, n1 = 4 and µ = 7).
The bottom plot shows five model simulations and the true SARS data for Hong Kong. The five model simulations were selected to ensure that a “full” outbreak
occurred (a total number of infections greater than 1000). The true data is plotted as a heavy solid line.
(a) xt .

(b) xt .

Fig. 9. Probability distribution on the lag one autocorrelation for 1000
simulations of the SW model, and the standard SIR model with stochastic
perturbations. The heavy vertical line is the equivalent quantity for the true
data. We see that the simulations from the SW model (b) are indistinguishable
from the data; the SIR model (panel (a)) is not.

• For the endemic case, the rate of growth of infection is

1 −
r0 + r1

2
+

√
1
4
(r0 − r1)

2
+ nkr0.
• This model exhibits behaviour consistent with both SSEs
and persistent localised transmission (Section 3.4). More
extreme SSEs can be observed simply by fattening the
tail of the distribution of links. By assigning a power-law
distribution to the number of nonlocal links that a node has,
one can readily obtain SSE involving many hundreds of
secondary infections from a single source.

• An SSE does not imply highly infectious individuals, only
highly connected ones (Section 3.4).

• Theoretical results and model simulations are unlike the true
data, unless exposure time is significantly greater than an
average of three days (Sections 2.2 and 3.3). If the exposure
time is three days or less, the rate of growth of the epidemic
is significantly lower than that observed in the true data.

• Nosocomial transmission was therefore a key factor in
the acuteness of the SARS epidemic in Hong Kong in
2003. Effective control of hospital transmissions would have
prevented a serious outbreak (Section 3.3). With respect to
nosocomial transmission, our model therefore confirms what
has been observed independently, and suggested by many
authors.

• Simulations of our model, with minimal parameter variation,
produced dynamics indistinguishable from the true data.
These same parameter values exhibit a wide variety of
behaviours (Section 3.5). Hence, any effort to actually obtain
maximum likelihood parameter estimates from the observed
data is futile. Despite this, our calculations show that the true
data is certainly typical of our models. Moreover, our models
exhibit a marked long-tailedness both in infection times and
epidemic lifetimes.

• The likelihood of infecting fewer than 20 people was
approximately 0.18, and the likelihood of infecting more
than 1000 was 0.27 (Section 3.5).
Apart from deriving analytic expression for the spreading

and control of an epidemic, the main results of this study, when
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Fig. 10. Probability distribution on the total number of infections. The probability distribution on the total number of infections for 1000 simulations of the model
in Fig. 8 is shown on a linear (top plot) and a logarithmic scale.
Fig. 11. Probability distribution infection dynamics. The probability distribu-
tion of the daily number of infections for 1000 simulations of the model in
Fig. 8 are shown on a logarithmic scale. Blue represents low probability, while
red represents high probability of a particular infection tally for any number
of days after onset.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

applied to the SARS epidemic in Hong Kong in 2003, is that
our data is consistent with the observation that the epidemic
that occurred was largely preventable. The primary factor for
the severity of the outbreak was poor infection control in the
hospital setting and the delayed introduction of quarantine
and community isolation practices. This is consistent with
various discussions presented elsewhere. However, we note
that nosocomial transmission was considered only by
supposing (admittedly erroneously) that the time between
becoming symptomatic (and infectious) and hospitalisation is
constant. Nosocomial transmission is simulated by changing
the expected duration between becoming symptomatic (I)
and becoming removed (R). Although this is perhaps
unconventional from an epidemiological viewpoint, it is
probably the best that we can do, as the only data that we
have to work from is the date of hospital admission. This
conclusion is in contrast with work done by Pastor-Satorras and
colleagues [20,21] with scale-free SIS type [7] disease models.
In that case, they found that the disease would almost always
persist and that random immunisation was ineffective [21].

The model presented here emphasised the small-world
transmission dynamics created by providing a small number
of highly connected nodes. We model the inter-connection
between nodes with one-directional links (rather than the
bi-directional links we would expect for social contacts)
because this makes the network much easier to construct,
without sacrificing any realism. This model could easily be
extended to exhibit scale-free characteristics, by simply altering
the distribution of non-local links (to follow a power-law
distribution). Doing so would produce simulations with a larger
number of highly connected individuals, and therefore we could
simulate the largest SSEs in the data. The results presented
in this paper show small (less than 100 individuals) SSEs;
extension to the power-law distribution would provide SSEs
with a larger number of secondary infections.

We should note that it is very difficult to reliably and
accurately fit even a moderate number of parameters to a
stochastic model from such limited data. Especially when the
model, for the same parameter values, can exhibit a wide
variety of behaviour. To overcome this, we (a) make our
model so simple that the number of parameters is very few
(certainly comparable in number to ordinary SIR), and (b)
only “fit” the model with typical parameter values and test
that, for these parameter values, the observed data is typical.
Certainly, we cannot exclude the (quite likely) probability that
other parameter values also produce behaviour of which the
observed data is typical. Therefore, in this paper we only
draw conclusions based on our observations of parameters that
produce behaviours that are either typical or (more importantly)
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atypical of the observed data. Although we have observed that
our model exhibits more realistic dynamics than SIR models,
it is only a model. And, like the SIR model, our model is
a compromise between complexity and realism. We intend to
address this problem in the future by applying Monte Carlo
Markov Chain models [22] to this sparse data [23].

Even our choice of a discrete time model is open to debate.
The choice, with a time interval chosen as one day, was
motivated by the data and what was more intuitive to us. We
have conducted calculations with both longer and shorter inter-
interval time scales and find that the results are invariant under
a suitable change in time scale (i.e. we get equivalent results by
using a shorter time step).

Moreover, recent epidemiological case studies have found
that, overall, in Hong Kong 8% of individuals sharing a flat
with a SARS patient contracted SARS [24]. Given an average
infectious period of four days (prior to hospitalisation), this
implies that the daily probability of transmission is 0.02. This
is approximately consistent with the values of p1 used in this
study, and therefore provides further support of our results.

Conversely, analysis of the SSE at the Prince of Wales
Hospital found that, for a group of medical students, the
probability of direct contact with the index patient leading
to SARS infection was 10

27 [5]. As this study dealt with
a single meeting, this implies a daily infection probability
of approximately 0.371: significantly higher than p2 in our
simulations. Hence, although we have concluded that SSEs may
occur without individuals necessarily being highly infectious,
epidemiological evidence suggests that, in some cases, this may
still be the case.

Finally, we note that, although the methods presented here
are applied only to the SARS outbreak in Hong Kong in 2003,
these methods are not limited to this situation. Apart from
repeating, or modifying, this analysis for different infectious
diseases (such as HIV AIDS), we imagine that these techniques
could be useful in the theoretical study of quarantine and
isolation practices, as well as disease transmission among
isolated communities. Quarantine can be effectively modelled
as a limitation of long range transmission. One can easily
model change in quarantine by varying the parameter µ (or
alternatively, but not equivalently, p2). This should provide a
new, simpler approach to the study of quarantine to supplement
compartmental models such as those described in [25].
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